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ABSTRACT
Current visual recognition heavily relies on deep neural networks
(DNNs) trained on vast amounts of manually annotated data. This
approach, while effective, suffers from two major drawbacks: the
laborious and time-consuming nature of data labeling and the need
to train separate DNNs for each specific task. Vision-Language
Models (VLMs) present an effective alternative by utilizing the vast
amount of readily available image-text pairs on the internet. This
work primarily focuses on mapping images to language and it also
explores the potential extension of Vision-Language Models (VLMs)
to video data.

1 INTRODUCTION
Recent years have seen major advancements in language model-
ing, with the emergence of Large Language Models (LLMs) such as
Llama and GPT capable of addressing a diverse range of tasks. The
increasing prevalence of these models underscores their growing
significance; while initially limited to textual inputs, these mod-
els now incorporate visual information, opening a new era of AI
applications.

Despite substantial progress in integrating language and vision,
challenges persist; existing Vision Language Models (VLMs) of-
ten exhibit limitations in comprehending spatial relationships and
performing counting operations without relying on complex en-
gineering solutions and additional annotated data. Furthermore,
many VLMs demonstrate a lack of understanding of attributes and
order, frequently omitting portions of input prompts and necessitat-
ing intricate prompt engineering to achieve desired outcomes. The
propensity for hallucination and generation of irrelevant content
further underscores the ongoing need for research and develop-
ment in this area. This research provides a comprehensive overview
and analysis of Vision-Language Model (VLM) methodologies. It
systematically categorizes and examines VLMs across three key
dimensions: pre-training strategies for robust vision-language rep-
resentation learning, training process and future direction of the
VLMs research. It offers also a comparative analysis of existingmeth-
ods, highlighting their strengths, weaknesses, and performance
benchmarks.

2 INGREDIENTS OF A VLM
Visual Language Models (VLMs) represent a significant advance-
ment in the field of artificial intelligence, combining the power of
computer vision and natural language processing. These models are
characterized by their diverse architectural paradigms, which vary
depending on how they approach the fusion of visual and textual
modalities. Despite this diversity, VLMs share a fundamental prin-
ciple: the transformation of both visual and textual inputs into a
unified representational format. At the core of VLMs lie embeddings

Figure 1: Number of publications on visual recognition VLMs
(from Google Scholar). The publications grow exponentially
since the pioneer study CLIP [10] in 2021.

- numerical vectors that encapsulate semantic information. These
embeddings are fundamental in aligning and integrating visual and
textual data within a shared latent space. This integration allows
VLMs to understand and process information from both modalities
simultaneously, enabling more sophisticated analysis and genera-
tion tasks. An aspect to be noted of VLM architecture is the timing
and strategy of modality fusion. This can range from early-stage
alignment, where visual and textual information is combined at
the beginning of the processing pipeline, to late-stage integration,
where the fusion occurs closer to the output. The choice of fusion
strategy significantly impacts the model’s performance and capa-
bilities, influencing how it interprets and generates multimodal
content. The architectural decisions in VLM design involve care-
ful consideration of how to best use the strengths of both visual
and textual processing while mitigating their individual limitations.
As research in this field progresses, it is possible to expect to see
increasingly sophisticated VLM architectures that push the bound-
aries of multimodal understanding and generation, opening up
new possibilities in areas such as image captioning, visual question
answering, and multimodal content creation.

3 FAMILIES OF VLMS
Visual recognition-related Vision-Language Model (VLM) studies
have demonstrated significant advancements since the introduction
of CLIP [34]. The evolution of pre-training objectives has progressed
from a singular focus to a more comprehensive approach incorpo-
rating multiple hybrid objectives. Early VLMs typically employed a
single pre-training objective, now contemporary models have in-
troduced multiple objectives, including contrastive, alignment, and
generative approaches. This multifaceted strategy aims to explore
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the potential synergies between different objectives, ultimately lead-
ing tomore robust VLMs and enhanced performance in downstream
tasks. Several key paradigms have emerged in VLM pre-training.
Contrastive training, a widely adopted strategy, utilizes pairs of
positive and negative examples to train the VLM in predicting sim-
ilar representations for positive pairs while differentiating negative
pairs. The masking approach focuses on reconstructing masked
image patches given unmasked text, or vice versa, reconstructing
masked words in captions given unmasked images. VLMs based on
pretrained backbones often employ open-source Language Mod-
els (LLMs) like Llama [43] to learn a mapping between an image
encoder and the LLM, a method that is typically less computation-
ally intensive than training text and image encoders from scratch.
Generative VLMs, while often the most computationally expen-
sive to train, are designed to generate both images and captions.
It is important to note that these paradigms are not mutually ex-
clusive; many contemporary approaches employ a combination
of contrastive, masking, and generative criteria to achieve opti-
mal performance. Pre-training frameworks have shifted from using
separate networks to a unified network architecture; initial VLM
designs relied on two-tower pre-training frameworks, while recent
iterations have explored one-tower pre-training frameworks. These
unified networks encode both images and texts within a single
structure, resulting in reduced GPU memory usage and facilitating
more efficient communication across data modalities. This evolu-
tion in architecture design reflects the ongoing efforts to improve
the efficiency and effectiveness of VLMs in visual recognition tasks.

3.1 Contrastive-based VLMs
Contrastive learning has emerged as a prominent and solid para-
digm in the pre-training of Visual Language Models (VLMs), work-
ing good in enhancing the models’ ability to learn discriminative
image-text features. This approach has gained significant attraction
in recent years, with numerous studies demonstrating its effec-
tiveness in improving the performance and generalization capa-
bilities of VLMs across various multimodal tasks [34], [30], [26].
Contrastive Language-Image Pre-training (CLIP), introduced by
Radford et al. in 2021, exemplifies a notable contrastive method
utilizing the InfoNCE loss. CLIP’s approach to defining example
pairs is distinctive: it considers an image paired with its authentic
caption as a positive example, while treating the same image com-
bined with captions describing other images within the mini-batch
as negative examples. CLIP’s innovation lies in its ability to unify
visual and linguistic information within a shared representational
framework. The model achieves this by training vision and text
encoders from scratch, guiding them to project images and their
corresponding captions into similar embedding vectors through the
application of a contrastive loss function. The original CLIP model,
trained on an extensive dataset of 400 million image-caption pairs
sourced from the internet, demonstrated remarkable capabilities
in zero-shot classification transfer. Notably, a CLIP model utilizing
a ResNet-101 architecture matched the performance of a super-
vised ResNet [15] model, achieving a 76.2% accuracy in zero-shot
classification tasks. Furthermore, CLIP outperformed traditional su-
pervised models on several robustness benchmarks, highlighting its
adaptability to diverse visual recognition challenges. Building upon

CLIP’s foundation, SigLIP, proposed by [58] in 2023, introduces
a key modification to the contrastive learning approach. While
maintaining a similar overall structure to CLIP, SigLIP employs the
original Noise Contrastive Estimation (NCE) loss, which is based on
binary cross-entropy, instead of CLIP’s multi-class objective derived
from InfoNCE. This alteration enables SigLIP to achieve superior
zero-shot performance, particularly when working with smaller
batch sizes compared to CLIP. The enhanced efficiency in smaller
batch scenarios makes SigLIP an attractive option for researchers
and practitioners working with limited computational resources.
Further advancing the field, Latent Language Image Pretraining
(Llip) [23], addresses a fundamental aspect of image-text relation-
ships: the inherent diversity in image captioning. Llip’s approach
involves conditioning the encoding of an image on the target cap-
tion through the implementation of a cross-attention module; this
methodology acknowledges and allows for multiple accurate de-
scriptions of a single image. By accounting for caption diversity,
Llip enhances the expressivity of the learned representations andt-
This increased expressivity translates into improved performance
across various downstream tasks, particularly in zero-shot trans-
fer scenarios for both classification and retrieval tasks. The Llip
approach represents a significant step towards more refined and
context-aware visual-language models, capable of capturing the
subtleties and variations inherent in human descriptions of visual
content. The evolution from CLIP to SigLIP and Llip illustrates the
rapid progress in contrastive learning methods for visual-language
models. Each iteration brings refinements and novel insights, push-
ing the boundaries of what’s possible in zero-shot learning and
transfer capabilities. These advancements not only improve model
performance but also enhance their applicability across a wider
range of real-world scenarios, from content retrieval systems to au-
tomated image analysis in various domains. Contrastive objectives
aim to bring together semantically similar instances (positive pairs)
while pushing apart dissimilar ones (negative pairs) in the embed-
ding space. This approach produces the learning of discriminative
visual and language features, which are very important for robust
zero-shot predictions. However, contrastive learning faces two pri-
mary challenges: (1) the intricate optimization of both positive
and negative pairs and (2) the reliance on a heuristic temperature
hyperparameter to control feature discriminability.
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Figure 2: Illustration of the image-text contrastive learning
in CLIP [34]. Figure is reproduced from [34]

3.2 VLMs with masking objectives
Masking, a core technique in deep learning, involves selectively ob-
scuring parts of input data. Rooted in denoising autoencoders [47]
and related to image inpainting [31], masking has been employed
to learn robust representations. The BERT model [9] popularized
Masked Language Modeling (MLM) for natural language process-
ing, while Masked Image Modeling (MIM) techniques like MAE
[14] and I-JEPA [2] emerged in computer vision. Given its com-
patibility with tokenization, masking is particularly effective with
transformer architectures [46]. Several works have combined MLM
and MIM for Vision-Language Models (VLMs). FLAVA [37] incor-
porates masking as part of its training strategy, while MaskVLM
[22] is dedicated to this approach.

3.2.1 FLAVA. The model comprises three transformer-based en-
coders: one for images, one for text, and a multimodal encoder
that fuses image and text representations. During pretraining, the
model is trained on both paired and unpaired image-text data. For
paired data, contrastive, masked multimodal modeling (MMM), and
image-text matching (ITM) losses are employed. For unpaired data,
masked image modeling (MIM) and masked language modeling
(MLM) losses are applied to the respective encoders. This compre-
hensive training regime allows FLAVA to excel at a wide range of
tasks, including image and text understanding as well as multimodal
reasoning.

Figure 3: Illustration of masked image modelling. Figure is
reproduced from [14]

3.3 Generative-based VLMs
Unlike traditional methods that focus on creating abstract represen-
tations of images and text and then correlating them, the generative
approach directly handles the creation of text and/or images them-
selves. Some methods, like CoCa [54], develop a complete text
encoder and decoder that enables image captioning. Others, such as
Chameleon Team [41] and CM3leon [56], are multimodal generative
models explicitly trained to generate both text and images. Finally,
there are models designed specifically to generate images from text,
including Stable Diffusion [4], Imagen [17], and Parti [55]. Despite
being trained only for image generation, these models can also be
adapted to address various vision-language understanding tasks.
This approach encourage VLMs to develop deep understandings of
visual, textual, and multimodal contexts; to enhance their ability
to perform zero-shot tasks, these generative objectives are often
employed in conjunction with other pre-training techniques. While
generative classifiers demand greater computational resources dur-
ing inference, they offer substantial advantages; they exhibit an
high level of robustness, demonstrating superior performance on
out-of-distribution data compared to discriminative models while
maintaining comparable in-distribution accuracy. Generative clas-
sifiers excel in tasks requiring compositional reasoning, such as
Winoground [42], surpassing discriminative counterparts. Their
alignment with human judgment [19] in terms of shape bias is an-
other strength. Moreover, generative models can be complementar-
ily combined with discriminative ones at test time using unlabeled
data, leading to performance improvements across various tasks,
especially in dynamic environments [32].
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Figure 4: A simplified illustration of image-to-caption gener-
ation in COCA [54]. Figure is reproduced based on [54].

3.4 VLMs from Pretrained Backbones
Training Vision-Language Models (VLMs) from scratch is compu-
tationally expensive, demanding large amounts of data and com-
putational resources. Consequently, researchers have focused on
employing pre-trained language models and visual feature extrac-
tors to reduce training costs. The availability of open-source large
language models (LLMs) has been an essential element for this ap-
proach. By learning a mapping between text and image modalities,
these models can acquire the ability to answer visual questions with
significantly less computational overhead. This section highlights
two representative models: Frozen [45], a pioneering work in this
area, and the Mini-GPT family [62]. For example, MiniGPT-5 [59]
builds upon MiniGPT-4 by enabling outputs that combine text and
images. To facilitate image generation, MiniGPT-5 uses generative
tokens—special visual tokens that are transformed into feature vec-
tors via transformer layers; these vectors are then fed into a frozen
Stable Diffusion 2.1 model. The authors used supervised training
on downstream tasks, like a multimodal dialogue generation and
story generation.

In conclusion, VLM pre-training models the relationship be-
tween vision and language through various objectives, including
contrastive learning, masked modality modeling, image-to-text gen-
eration, and image-text/region-word matching. To take advantage
of the potential of each modality, models often incorporate single-
modal tasks like masked image or language modeling. While recent
work has focused on capturing global vision-language correlations
for image-level tasks, other research has explored modeling fine-
grained relationships between image regions and words to enhance
object detection and semantic segmentation [53] [27] [24] [10] [35].

4 VLM TRAINING
Recent research emphasized the important role of scale in enhanc-
ing deep neural network performance [16]. As consequence, many
studies have prioritized increasing computational resources and

dataset size to develop superior models; this trend is exemplified
by CLIP, trained on a massive dataset of 400 million images us-
ing substantial compute power. Even its open-source counterpart,
OpenCLIP [18], required 256-600 GPUs for training. However, a
groundbreaking study [38] challenges the notion that scale alone
determines model performance, proving that meticulously curated
datasets can surpass models trained with significantly higher com-
putational power. About the training data, DataComp benchmark
evaluates the impact of dataset quality on VLM performance by
comparing different filtering strategies on large-scale web data.
The findings underscore that the practice of data pruning is a crit-
ical component in the training of Vision-Language Models; keep
note that data-pruning methods can be categorized into heuristic,
bootstrapping, and diversity-based approaches.

Figure 5: Data quality and quantity are one of the most im-
portant aspects of VLM training. Diverse, balanced, and clean
datasets are essential for robust models. Effective data cura-
tion involves removing duplicates, filtering irrelevant con-
tent, and enhancing caption quality. Grounding ensures ac-
curate word-to-image associations, while alignment brings
model outputs into line with human expectations.

5 SOFTWARE AND RESOURCES FOR VLM
TRAINING

This section explores existing software and resources for VLM
evaluation and training.

5.1 Public Software Repositories
Fortunately, numerous open-source software repositories exist to
empower VLM exploration. Tools like OpenCLIP and Transformers
implement various VLM architectures; these platforms are ideal
for benchmarking and comparing pre-trained VLMs on specific
downstream tasks.

5.2 Understanding Compute Resource Needs
The computational resources required for VLM training signifi-
cantly impact associated costs. Models like CLIP utilized massive
compute power exceeding 500 GPUs, translating to hundreds of
thousands of dollars – often out of reach for most research labs or
companies. However, by employing high-quality datasets and the
use of masking strategies for larger models, training a contrastive
model like CLIP from scratch on vast image datasets (hundreds of
millions) might not require more than 64 GPUs (roughly equivalent
to $10,000 in compute costs). Additionally, if pre-trained image or
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text encoders or LLMs are used as the foundation, the learning cost
for mapping should be substantially lower.

5.3 Accelerating Training
Recent software advancements like PyTorch’s torch.compile signif-
icantly speed up model training. The xformers library with more
efficient attention mechanisms also contributes to faster training
times. However, data loading is often overlooked as a major train-
ing bottleneck, especially when dealing with large image batches.
This is because large-scale datasets are often stored in compressed
chunks that need on-the-fly decompression, slowing down training.
Here are some key recommendations for faster training:

• Store uncompressed files: Optimize training speed by
storing as many uncompressed data files as possible.

• FFCV library: Fast Forward Computer Vision (FFCV) li-
brary allow to create data files that offer significantly faster
loading compared to webdataset.

• Masking: Masking image tokens during training can con-
siderably boost training efficiency while improving model
performance, especially for models with billions or hun-
dreds of millions of parameters [25].

While these approaches may require more storage space due to
uncompressed files, the speed benefits often outweigh the cost; the
reduced compute time translates to lower overall training costs.

5.4 Importance of Hyperparameters
A recent study by [28] explored the most used design choices for
VLM training. Their findings highlight image resolution, visual en-
coder capacity, and visual pre-training data as the most important
factors impacting model performance. Interestingly, the study sug-
gests that the method of modality connection has a lesser influence.
The authors also study the importance of diverse training data,
ranging from text-only to interleaved and image-caption paired
data. They demonstrate that the optimal mix of these data types
achieves the best performance across zero-shot classification and
visual question answering tasks.

6 WHAT MODEL TO USE?
There are several methods to train VLMs; some of them use simple
contrastive training criteria, others usemasking strategies to predict
missing texts or image patches, while somemodels are using genera-
tive paradigms such as autoregression or diffusion. It is also possible
to employ a pre-trained vision or text backbones like Llama or GPT.
In that instance, building a VLM model requires learning only a
mapping between the LLM and vision encoder representations. So,
from all those methods, which one should someone choose? Do we
need to train vision and text encoder from scratch like CLIP or is it
better to start with pretrained LLM such as Flamingo or MiniGPT?

6.1 When to use contrastive models like CLIP?
Contrastive models like CLIP associate text with visual concepts
while keeping a simple training paradigm by pushing text and
image representation to be matched in the representation space.
By doing so, CLIP learns representations that have both meaning
in the image and text space, which makes it possible to prompt

the CLIP text encoder with words such that we can retrieve the
images that map to the corresponding text representations. For
example, many data curation pipelines such as MetaCLIP [50] are
using metadata string matching to build datasets to ensure that
each word or concept has enough images associated with them.
CLIP models are also a good base for building more complex models,
especially when trying to improve grounding. For researchers who
are looking at trying additional training criteria or different model
architectures to better capture relations or a better understanding
of concepts, CLIP is a particularly good starting point. However,
one should keep in mind that CLIP is not a generative model, thus
it is not possible to generate a caption given a specific image. It is
only possible to retrieve the best caption within a list of already
existing captions. In consequence, current CLIP models cannot be
used to provide high-level descriptions of a given image. Another
drawback is that CLIP usually needs a very large dataset as well as
large batch sizes to offer decent performances, which implies that
CLIP usually needs significant resources to be trained from scratch.

6.2 When to use masking?
Masking is an alternative strategy to train VLMs. By learning to
reconstruct data from both masked images and text, it is possible
to jointly model their distributions. On the other hand, contrastive
models which operate in a representation space, models based on
masking might need to employ a decoder to map back the repre-
sentation to the input space (and thus to apply a reconstruction
loss). Training an additional decoder might add an additional bottle-
neck which might make these methods less efficient than a purely
contrastive one. However, the advantage is that there is no batch
dependency anymore since each example can be considered sep-
arately (because there is no need negative examples). Removing
negative examples can enable the use of smaller mini-batches with-
out the need to finetune additional hyper-parameters such as the
softmax temperature. Many VLM methods use a mix of masking
strategies along with some contrastive loss.

6.3 When to use a generative model?
Generative models based on diffusion or autoregressive criteria
have demonstrated impressive abilities in generating photorealistic
images based on text prompt. Most large-scale training efforts on
VLM are also starting to integrate image generation components.
Some researchers explain that having the ability to generate images
given words is an important step towards creating a good world
model while other researchers argue that such a reconstruction
step is not needed [3]. However from an application perspective, it
might be easier to understand and assesswhat themodel has learned
when it is able to decode abstract representations in the input data
space (it is also possible to add a decoder on top of a trained join-
embedding architecture [5]). While models like CLIP would need
extensive k-NN evaluations using millions of image data points to
show what the images closest to a given word embedding look like,
generative models can just output the most probable image directly
without such an expensive pipeline. In addition, generative models
can learn an implicit joint distribution between text and images
which might be more suited for learning good representations than
employing pretrained unimodal encoders. However, they are more
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computationally expensive to train than their contrastive learning
counterpart.

6.4 When to use LLM on pretrained backbone?
Using already pretrained text or vision encoder can be a good alter-
native when having access to limited resources. In that case, only
the mapping between the text representation and vision representa-
tion should be learned. However, the main issue with this approach
is that the VLM will be impacted by the potential hallucination
of the LLM. It could also be impacted by any bias coming from
the pretrained models. In consequence, there might be an addi-
tional overhead in trying to correct the defect of the vision model
or of the LLM. Some might argue that it is important to employ
independent image and text encoder to project the information
into a lower dimension manifold on which it is possible to learn a
mapping while others might argue that it is important to learn the
distribution of image and text jointly. To summarize, using a pre-
trained model is interesting when having limited access to compute
resources and when researchers are interested in learning mapping
in representation spaces.

7 VLM AND VIDEOS
Video data presents new challenges and opportunities for models,
including understanding motion and dynamics, localizing objects
and actions in space and time, and generating text-to-video content.
Recent years have seen the emergence of fundamental computer
vision tasks such as text-to-video retrieval, video question answer-
ing, and generation [50][40][6]. Video data, however, requires sig-
nificant computational resources and storage, particularly when
dealing with high-frame-rate videos. This necessitates trade-offs
in VLMs, such as using compressed video formats (e.g., H.264 en-
coding) with on-the-fly video decoders, initializing video encoders
from image encoders, and incorporating spatial and temporal pool-
ing/masking mechanisms [11][13]. Non-end-to-end VLMs, which
extract video features offline and train models on these features, are
also being explored. Early video-text models trained from scratch
the visual and text components using self-supervised criteria [1].
However, unlike image models, contrastive video-text models were
not the primary approach, and early fusion and temporal alignment
of video and text were preferred [39]. This is because more tempo-
ral granularity in the representation is often more interesting than
computing a global representation of the video. Recently, a trend
similar to image-language models has emerged for video-language
models: pre-trained Large Language Models are being used and
aligned with video encoders to augment the LLMs with video under-
standing capabilities. Modern techniques such as visual instruction
tuning are also being adapted to video. The first successful general
approach to video-language modeling was VideoBERT [39], which
is an early fusion approach that fuses visual and textual tokens
representing video caption pairs with a single transformer network.
The video data comes from YouTube instructional cooking videos,
and the aligned text is obtained using automatic speech recognition
(ASR). VideoBERT demonstrates strong alignment and it is the first
model able to perform well on video tasks that require generat-
ing text, such as zero-shot action classification and open-ended
video captioning. Going beyond global video and text alignment,

Multimodal Event Representation Learning Over Time (MERLOT)
[57] achieves video language alignment by temporally aligning
text with video. Unlike VideoBERT, which is trained on curated
instructional cooking videos, MERLOT is trained on a large-scale
dataset of YouTube videos with diverse content and correspond-
ing text obtained by ASR. MERLOT uses a transformer network
trained in a purely self-supervised way with a contrastive objec-
tive, masked language modeling objective, and temporal reordering
objective. The model demonstrated impressive capabilities on ques-
tion answering tasks, particularly visual common sense reasoning.
However, it lacks the ability to generate text, which limits its ability
to demonstrate advanced visual reasoning capabilities.

8 FUTURE STUDIES
VLM has achieved significant success in various visual recognition
tasks, enabling effective usage of web data, zero-shot prediction
without task-specific fine-tuning, and open-vocabulary visual recog-
nition of images of arbitrary categories. However, there are several
research challenges and potential directions that could be followed
in the future to further improve VLMs.

8.1 Pre-training
• Fine-grained Vision-Language Correlation Modeling:
VLMs can benefit from fine-grained vision-language cor-
respondence knowledge to recognize patches and pixels
beyond images, which is crucial for dense prediction tasks
such as object detection and semantic segmentation. More
research is needed in this direction [53] [27] [24] [10] [51]
[60].

• Unification of Vision and Language Learning: Unify-
ing image and text learning within a single Transformer
can enable efficient communication across data modalities,
improving training effectiveness and efficiency. This issue
has attracted some attention, but more efforts are needed
[44] [20].

• Pre-training VLMs with Multiple Languages: Most ex-
isting VLMs are trained with a single language, which can
introduce bias and hinder VLM applications in other lan-
guage areas [36] [7]. Pre-training VLMs with texts of mul-
tiple languages can enable VLMs to work efficiently and
effectively across different language scenarios [8] [21].

• Data-Efficient VLMs: Training VLMs with limited image-
text data can mitigate sustainability concerns. More re-
search is needed on data-efficient VLMs, such as learning
from supervision among image-text pairs [49] [26].

• Pre-trainingVLMswith Large LanguageModels (LLMs):
Recent studies [12] [52] have explored using LLMs to en-
hance VLM pre-training by retrieving rich language knowl-
edge. More research is expected in this direction.

8.2 Transfer Learning
• UnsupervisedVLMTransfer:Most existing VLM transfer

studies workwith supervised or few-shot supervised setups,
which can lead to overfitting. Unsupervised VLM transfer
allows exploring massive unlabelled data with lower risk
of overfitting.
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• VLMTransfer with Visual Prompt/Adapter:Most exist-
ing studies [61] focus on text prompt learning, while visual
prompt learning or visual adapter can enable pixel-level
adaptation in various dense prediction tasks.

• Test-time VLM Transfer:Most existing studies conduct
transfer by fine-tuning VLMs on each downstream task,
which can be repetitive. Test-time VLM transfer allows
adapting prompts on the fly during inference, avoiding
repetitive training.

• VLMTransfer with LLMs: Several attempts [33][29] have
explored using LLMs to generate text prompts that better
describe downstream tasks. More research is expected in
this direction.

8.3 VLM Knowledge Distillation:
VLM knowledge distillation can be further explored from two as-
pects: knowledge distillation from multiple VLMs and knowledge
distillation for other visual recognition tasks such as instance seg-
mentation, panoptic segmentation, and person reidentification.[48].

Figure 6: pre-training with knowledge distillation [48]

9 CONCLUSION
This research has demonstrated the diverse techniques available
for efficient VLM development, each with its own strengths and
weaknesses. The optimal approach depends on specific application
requirements and available resources. As the field continues to
rapidly evolve, this research provides a comprehensive overview
of the current state of VLM pre-training, offering a reading for
understanding the latest advancements and future directions.
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